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THE FREE CONVECTION OF A CONDUCTING FLUID IN CONNECTED VERTI-

CAL CHANNELS

G. Z. Gershuni and E. M. Zhukhovitskii
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The convection of a conducting fluid in vertical channels in a mag-~
netic field has been studied in a series of papers (see review [1]).
Motion in isolated channels was considered in these papers., The pre-
sent paper solves the problem of convection in a system of two con-
nected plane vertical channels. A solution is obtained for the problem
of steady-state motion when heating occurs from the side. Equilibrium
stability is also investigated for a liquid which is heated from below
(the magnetohydrodynamic generalization of the problem considered
previously [2]).

1. Steady-state motion. Two parallel plane vertical
channels of width 2h, separated by a dielectric layer
of thickness 2(d — h) (see Fig. 1), are filled with a
conducting fluid and placed in an external magnetic
field Hy, perpendicular to the channel houndaries. The
external channel boundaries are maintained at con-
stant temperatures of #®. The channels are joined
both above and below, so that when convection of the
fluid occurs it may rise in one channel and fall in the
other (a model of the middle part of a long convection
loop). The equations for convection of a conducting
fluid in a magnetic field have the form

a 1 H?
a5 FOV)V=— V(p+ )+

+ ZJ%p—O-(HV)H—{—vAv—gBT, (1.1)
B4 W) H=EY)v+ AR, (1.2)

X 4 vVT =1AT,

divv =0, divlH =0 (1.3)

(all the symbols are those in general use). We shall
seek a steady-state solutionof the system of equations
(1.1)~(1.3) in the following form:
Uy = vy =0, T=T(z),
H,=H, H,=0, H,=H(z), p=p(x 2. (1.4)

v, = U(JZ),

We obtain the following equations for the velocity v,
temperature T, induced magnetic field H, and pres-
sure p:

1 d H? 1 ’ "
H;;(P'%‘ g{)'—_—mHOH 4 vo” 4 gBT,
1 9 H?
_975;(,,+§n_)=0, (1.5)
2 ” ” "
HoU’-‘l“ 43:[-5-[{ =, T :0, Tm ‘:O,
H,)=0. (1.6)

Here Tm and Hy, are the temperature and induced
field in the solid nonconducting layer between the chan~
nels; the primes denote differentiation with respect to
X.
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Equations (1.5)—(1.6) are now written in dimen-
sionless form, taking h, v/h, ®, and Hy as units of
distance, velocity, temperature, and field, respec-
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tively. The dimensionless velocity, temperature, and
field are

v" 4+ GT + M2P, ' = C | 1.7m
H 4Py =0, T"=0, T, =0,
H, =0. (1.8)

Here C is the constant of separation for the variables.
Three dimensionless parameters enter into the equa~-
tions: the Grashof number G, the Hartmannnumber M,
and the magnetic Prandtl number P,,, which areequal
to

_ gBent
y2

M =" /1)‘/2, P, = (1.9)
At the channel boundaries the fluid velocity vanishes,
the temperature at the outer boundaries is given, and
at the boundaries between the channel and the inter-
layer the temperature and heat flux are continuous; the
induced field disappears at the outer boundaries and is
continuous at the boundaries between the fluid and the
interlayer. Thus the boundary conditions are

v=0, T=T, A" =T,

H=Hy fors—s-t 22,

v=0, T=42I1,

H=0 fors=m=i4 " (x: %) (1.10)
m
Here and in what follows the plus and minus signs
refer to the right-hand and left-hand channels, re-
spectively; n and %y, are the thermal conductivities of
the fluid and the interlayer.
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Solving linear equations (1.7)—(1.8) together with
boundary conditions (1.10) and allowing for the fact that
the flow occurs in a closed circuit (the rate of fluid
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flow over the cross section of both channels is equal
to zero), we obtain the following distributions of tem-
perature, velocity, and field:

T =dke, T=al(—1) 2+ zl,

a= @+ Az, (1.11)
_ wash M (x — )

2]y (12)

__ oG 218h M (2 — z)
- Mz[ T Tsh M (2 —1)

z1[1 —ch M (xa—2)] +

H e aGPy, (g2 22
- { Msh M ((tz _ 1‘1)

M2 2 +

@3 [ch M (x — 1) — ch M (%3 — 1)]

+ MShM(-Z‘z—:L’l) } (1-13)

aGPy (32— 5y
m:‘MT{ 7 T

(zl ~+ x3) [ —ch M (z3 — )] )

Msh M (23 — 1) ) (1.14)

It is clear from (1.11) that the temperature distri-
bution is independent of the field.

Velocity profiles for the case in which the thick-
ness of the interlayer is equal to the channel width
(i.e., |X1| = 1) are given in Fig. 2 for certain values
of the Hartmann number M. The velocity in the ab-
sence of a field is obtained from (1.12) at the limit as
M-— 0:

G
v = 5 (x:_ - [z (2s — :1:1)3 —_

— 2y (T — ) — 2y (z — 21)?] | (1.15)

We see that the rate of motion is determined by the
parameter aG = G(2 + A|x,|)”!. As the field increases
the motion slows down and Hartmann boundary layers
are formed in the flow at the walls, We note, however,
that the velocity profile in each channel differs inform
from the well-known profile of the Hartmann case,
which is explained by the nonuniformity of the mass
(convective) force ovei the channel cross section.

The induced field is an even function of the trans-
verse coordinate x. The induced-current density in
the fluid j = (c/47) rot Hcan be distributed over the
channel cross section in the same way as the velocity.

In the flow being considered, convective heat trans-
fer occurs upward along each channel. The total heat

flux (per unit length along the y-axis) is determined
from the formula

Q=pc,\vTdz. (1.16)
Here v and T are the dimensional velocity and tem-
perature, cp is the heat capacity of the fluid, and the
integration is carried out over the cross sections of
both channels.
After substituting v and T into (1.16) we have
4pe_gBB2RS th M
Q= m[% (z1+1) (W—"i)(1 — '—-—) +
-+ '3—(39512 + 62 4 4) —
th M 2 th 2M
cl 20th2M Mz]

The thermal flux decreases as the field increases.
For weak fields (M < 1) from (1.17) we have

—ay (3 - 2) B (1.17)

. 2 644630+ 630z ) A aga
Q_Q"[ 21 16+1511+15x1(:cl+1)}\,M +- ],
Q2hs 0
Qo= 4 pcpgf 16—}—151‘(12—:— 152)(:1.4_ A (1.18)

Here @ is the heat flux in the absence of a field.
For strong fields

4pc gB02h3
Q= B X
(2 -+ Azy)2v

« [é ot An (@) g (M), (119)

(in formulas (1.17)—(1.19) the quantity x; is taken to
be positive).

For |x;] — 0 the formulas given in this section
change to the corresponding formulas for an isolated
channel, found previously [3].

2. Equilibrium stability. We now consider the equi-
librium stability of a conducting fluid in connected
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vertical channels in the presence of a transverse mag-
netic field. If the fluid is heated from below, in the
equilibrium state the temperature Ty = —Az, where A
is the equilibrium temperature gradient. The normal
perturbations are functions of time according to the
law exp(—6t), while in the presence of a magnetic
field the perturbation decrement 6 will, generally
speaking, be a complex gquantity. In this case the equi-
librium of a fluid heated from below may break down
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as the result of the development of both monotonic as
well as oscillatory perturbations. However, itis known
(see [4, 5]) that equilibrium can become critical with
regard to oscillatory perturbations only when the in-
equality Pm > P is satisfied (P =v/y is the Prandtl
number), which as a rule is not so for laboratory con-
ditions. Thus it is of utmost interest to investigate
stability with regard to monotonic perturbations for

which 6 is a real quantity which vanishes at the limit of

stability. This case is treated below.
As regards the perturbation structure we assume*:

ve=v,=0, v,=v(r), Hy=H,=0,

H=H@), T=T@), Vp=0. (2.1)

We write the perturbation equations in dimension-
less variables. For the stability problem it is con-
venient to select h, y/h, Ah, and 4royHyc™? as units of
distance, velocity, temperature, ‘and field, respec-
tively. Thedimensionless equations for steady-state
perturbations then assume the form

v" - RT +M*H'=0, I"+v=0, H 4+» =0,
Tp'=0, Hp'=0 (R=gBAljvy).  (2.2)

Here the Rayleigh number R is determined by the
equilibrium temperature gradient. We shall solve the
perturbation equations for the conditions

v=0, T=7, , AT"'=T,'H=H, forz=2
v=0,7"=0, H=10 for z = . (2.3)

In addition, the flow should occur in a closed cir-
cuit. This differs from boundary conditions (1.10),
for which the problem of steady-state convection with
heating from the side was solved, since it is now as-
sumed that there is no horizontal heat flux in the
outer regions of the mass.

As in the case in which there is no field [2], the
problem has two types of solution. In solutions of the
first type, which in what follows will be called "odd"
solutions, the velocity and temperature are odd func-
tions, and the field an even function relative to the co-
ordinate origin. On the other hand in the "even" solu-
tions the velocity and temperature are even functions
and the field is an odd function.

We first give the "odd" solutions of the problem
(2.2)-(2.3):

cosg(ra—2)—chp(zg—2a)
€08 g (zz — z1) — ch p (x5 — 71)

v:j;[

__ gsing(z—=)+ pshp(z—z) 1
gsing (xa— ;) -+ psh p (z— 1) |’

= g%cosg(ra—2x) +pichp(em—2z)
r= :t[ cos g (x2 — 21) — ch p (%2 — 21)

*Perturbations which are periodic along the y-axis
are not treated here. It is well known that in the case
of a layer of infinite extent in the y direction the cri-
tical Rayleigh number tends to zero as the wavelength
of the perturbations increases [6,7].

o

g lsing (zg —2z)— p! shp(wa-x)J
T gsing(za—m) Fpshp(re—a) |’

Hzi[q“lsinq(xz—x)-— ‘1shp(a:2——x)+

€0s g (xz — 21) —ch p (2 — x1)

cos ¢ (x2— ) — ch p (22— ) }
2

+ g sing (z3—x1) + psh p (zs — 1)

H —2 1 (p2—g2)(2pg)y1sh2psin2g —ch 2p cos 2g
m (cos 2g — ¢h 2p) (g sin2g - psh 2p)

= ot p = [ (AT 2P

o= (T2 e

?

(the "plus" and "minus" signs refer to the right- and
left-hand channels respectively). The critical values
of the Rayleigh numbers which determine the limits of
equilibrium stability relative to the odd perturbations
are found from the characteristic relation

Pt qt

2p2q?

% pth2p+qgtg2g
sech 2psec2g — 1 4- (p2— ¢%) (2pgy 1 th 2ptg 2¢

=h|z | {2.5)

In the case of the "even" solutions there is no field
in the electrically nonconducting interlayer, and the
temperature is constant:

H,=0,

7 _ p°+4¢> gch2psin2g 4 psh2pcos2g (2.8)
™™ Tpigz (cos 2g — ch 2p) (gSin2g - psh2p)” :

The velocity, temperature, and field in the fluid
are described by formulas (2.4) with the "plus" sign
common to both channels. The spectrum of critical
Rayleigh numbers for the "even" solutions is deter-
mined by the relations

pthp-+ qtgg=0, gthp—ptgg=20. 2.0

The two relations (2.7) correspond to perturbations
in which the velocity and temperature are odd and even
functions, respectively, relative to the centre of each
channel.

Relations (2.5) and (2.7) determine the spectrum of critical Ray-
leigh numbers. In the "odd” case the critical R numbers depend on
two parameters: the Hartmann number M and a parameter A ]xll
which characterizes the thermal coupling of the channels, In the case
of "even” solutions the critical R numbers depend on the Hartmann
number only; there is no dependence on Al x| since in this case there
is no thermal interaction between the convective streams in the chan-
nels, and "autonomous™ circulation takes place in each channel. The
spectrum of critical R numbers in the absence of a field has been
found and discussed previously [2].

The lower critical level of instability is of greatest interest.

It turns out that this corresponds to the first of the odd solutions.
The smallest critical Rayleigh number is given in Fig. 3 as a function
of the coupling parameter Nx,| for several values of the Hartmann
number M, For an increase in /\]xll (as the thermal coupling between
the channels decreases) the critical Rayleigh number decreases and
tends to zero as A |x; |- . The magnetic field exerts a stabilizing
influence as usual; for a fixed value of Alx,| the critical Rayleigh
numbers increase as the field increases.

The critical Rayleigh numbers corresponding to "even” solutions
also increase as the field increases, Thus for solutions which are anti-
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symmetric relative to the channel center (the first of relations (2,7))
we have

R=Rn—]—rthr(rthr—-£)M3+... (ML), (2.8

Herer = R},/ * are the roots of the transcendental equation tgr+
+thr=0(r=2.365, 5.498, 8.639...). For the symmetric solutions
(the second of relations (2.7))

:—(Lt];;—:hr—)M2+...(M<1). (2.9)

R=Rot
Here 1 = Ry'/* is determined from the equation tgr — thr =0

(r=3.927, 7.069, 10.21...). In the case of strong fields (M > 1) we
have from (2.7)

R =Yn®n*M?* (n =1, 2, 3...).
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